Current Issue : January-March Volume : 2024 Issue Number : 1 Articles : 5 Articles
Background: Minimally invasive surgeries for non-small cell lung cancers (NSCLCs) such as video-assisted thoracoscopic surgeries (VATSs) and robotic-assisted thoracoscopic surgeries (RATSs) have become standard of care for patients needing surgical resection in early stages. The role for neoadjuvant systemic therapy has increased with patients receiving neoadjuvant systemic chemotherapy and immunotherapy. However, there has been some equipoise over the intraoperative and overall outcomes for these patients. Here, we review the current data regarding outcomes of patients undergoing minimally invasive thoracic surgical resection after systemic chemotherapy, immunotherapy, or both. Methods: A systematic literature review of randomized controlled trials and observational studies presenting data on patients with NSCLC that underwent neoadjuvant systemic therapy followed by minimally invasive surgery was performed assessing complications, conversion rates, and lymph node yield. Results: Our search strategy and review of references resulted in 239 publications to screen with 88 full texts assessed and 21 studies included in our final review. VATS had a statistically significant higher lymph node yield in five studies. The reported conversion rates ranged from 0 to 54%. Dense adhesions, bleeding, and difficult anatomy were the most common reported reasons for conversion to open surgeries. The most common complications between both groups were prolonged air leak, arrythmia, and pneumonia. VATS was found to have significantly fewer complications in three papers. Conclusions: The current literature supports VATS as safe and feasible for patients with NSCLC after neoadjuvant systemic treatment. Surgeons should remain prepared to convert to open surgeries in those patients with dense adhesions and bleeding risk....
Patients with human papillomavirus-negative head and neck squamous cell carcinoma (HPV-negative HNSCC) have worse outcomes than HPV-positive HNSCC. In our study, we used a published dataset and investigated the microbes enriched in molecularly classified tumor groups. We showed that microbial signatures could distinguish Hypoxia/Immune phenotypes similar to the gene expression signatures. Furthermore, we identified three highly-correlated microbes with immune processes that are crucial for immunotherapy response. The survival of patients in a molecularly heterogenous group shows significant differences based on the co-abundance of the three microbes. Overall, we present evidence that tumor-associated microbiota are critical components of the tumor ecosystem that may impact tumor microenvironment and immunotherapy response. The results of our study warrant future investigation to experimentally validate the conclusions, which have significant impacts on clinical decision-making, such as treatment selection....
Brain tumour surgery in visual eloquent areas poses significant challenges to neurosurgeons and has reported inconsistent results. This is a single-centre prospective cohort study of patients admitted for asleep surgery of intra-axial lesions in visual eloquent areas. Demographic and clinical information, data from tractography and visual evoked potentials (VEPs) monitoring were recorded and correlated with visual outcomes. Thirty-nine patients were included (20 females, 19 males; mean age 52.51 ± 14.08 years). Diffuse intrinsic glioma was noted in 61.54% of patients. There was even distribution between the temporal, occipital and parietal lobes, while 55.26% were right hemispheric lesions. Postoperatively, 74.4% remained stable in terms of visual function, 23.1% deteriorated and 2.6% improved. The tumour infiltration of the optic radiation on tractography was significantly related to the visual field deficit after surgery (p = 0.016). Higher N75 (p = 0.036) and P100 (p = 0.023) amplitudes at closure on direct cortical VEP recordings were associated with no new postoperative visual deficit. A threshold of 40% deterioration of the N75 (p = 0.035) and P100 (p = 0.020) amplitudes correlated with a risk of visual field deterioration. To conclude, direct cortical VEP recordings demonstrated a strong correlation with visual outcomes, contrary to transcranial recordings. Invasion of the optic radiation is related to worse visual field outcomes....
Background: the objective of this study is to evaluate the predictive power of the survival model using deep learning of diffusion-weighted images (DWI) in patients with non-small-cell lung cancer (NSCLC). Methods: DWI at b-values of 0, 100, and 700 sec/mm2 (DWI0, DWI100, DWI700) were preoperatively obtained for 100 NSCLC patients who underwent curative surgery (57 men, 43 women; mean age, 62 years). The ADC0-100 (perfusion-sensitive ADC), ADC100-700 (perfusion-insensitive ADC), ADC0-100-700, and demographic features were collected as input data and 5-year survival was collected as output data. Our survival model adopted transfer learning from a pre-trained VGG-16 network, whereby the softmax layer was replaced with the binary classification layer for the prediction of 5-year survival. Three channels of input data were selected in combination out of DWIs and ADC images and their accuracies and AUCs were compared for the best performance during 10-fold cross validation. Results: 66 patients survived, and 34 patients died. The predictive performance was the best in the following combination: DWI0-ADC0-100-ADC0-100-700 (accuracy: 92%; AUC: 0.904). This was followed by DWI0-DWI700-ADC0-100-700, DWI0-DWI100-DWI700, and DWI0-DWI0-DWI0 (accuracy: 91%, 81%, 76%; AUC: 0.889, 0.763, 0.711, respectively). Survival prediction models trained with ADC performed significantly better than the one trained with DWI only (p-values < 0.05). The survival prediction was improved when demographic features were added to the model with only DWIs, but the benefit of clinical information was not prominent when added to the best performing model using both DWI and ADC. Conclusions: Deep learning may play a role in the survival prediction of lung cancer. The performance of learning can be enhanced by inputting precedented, proven functional parameters of the ADC instead of the original data of DWIs only....
Small cell lung cancer is an aggressive subtype of lung cancer with limited treatment options. Precision medicine has revolutionized cancer treatment for many tumor types but progress in SCLC has been slower due to the lack of targetable biomarkers. This review article provides an overview of emerging strategies for precision therapy in SCLC. Targeted therapies include targeted kinase inhibitors, monoclonal antibodies, angiogenesis inhibitors, antibody–drug conjugates, PARP inhibitors, and epigenetic modulators. Angiogenesis inhibitors and DNA-damaging agents, such as PARP and ATR inhibitors, have been explored in SCLC with limited success to date although trials are ongoing. The potential of targeting DLL3, a NOTCH ligand, through antibody–drug conjugates, bispecific T-cell engagers, and CAR T-cell therapy, has opened up new therapeutic options moving forward. Additionally, new research in epigenetic therapeutics in reversing transcriptional repression, modulating anti-tumor immunity, and utilizing antibody–drug conjugates to target cell surfacespecific targets in SCLC are also being investigated. While progress in precision therapy for SCLC has been challenging, recent advancements provide optimism for improved treatment outcomes. However, several challenges remain and will need to be addressed, including drug resistance and tumor heterogeneity. Further research and biomarker-selected clinical trials are necessary to develop effective precision therapies for SCLC patients....
Loading....